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Abstract

This paper describes our approach for KDD Cup 2010. The approach we used is to utilize
a stochastic optimization in knowledge tracing and also introduce a new indicator variable,
“luck”. In order to compute the general probability about student’s understanding of
a particular problem, we use exponential moving average to give more weighting to the
recent results. In addition, we also taking into account several strategies to combine several
knowledge components in parallel.
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1. Introduction

The challenge of KDD Cup 2010 is to predict student performance on mathematical prob-
lems from logs of student interaction with Intelligent Tutoring Systems. The data contain
several columns which include student id, problem hierarchy, problem name, step name,
knowledge needed to answer the problem and several indicators about whether the students
correctly answer the problem or not. The goal of KDD Cup 2010 is to predict Correct
First Attempt from the given dataset. In our approach, we will consider the student id,
problem hierarchy, problem name, knowledge components and opportunity. A knowledge
tracing approach is employed to solve the problem. Corbett and Anderson (1995) shows
that knowledge tracing can be used to model knowledge state during skill acquisition.

2. The Method

This section will describe about our approach to solve the problem. First we will explain
how we deal with the dataset and preprocessing. Next we describe the basic formula that
we used in our method. Our main contribution that is stochastic optimization in knowledge
tracing is explained in the next subsection. The last subsection describes how we apply our
model to the test dataset.
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2.1 Proprocessing

In order to be able to apply knowledge tracing, a preprocessing to reconstruct data sequence
is previously carried out. In this step, for every student, the rows from test data is placed
below the rows of training data based on corresponding unit in problem hierarchy. Below
is the example:

Rows Student Id Unit Dataset

1-100 Student1 Unit1 Training
101-120 Student1 Unit1 Test
120-221 Student1 Unit2 Training
222-236 Student1 Unit2 Test
. . . . . . . . . . . .

However, in some cases, sequence cannot be reconstructed due to separated sequence of
a unit. For this case, we just simply put the rows from the test data after the last segment,
for example:

Rows Student Id Unit Dataset

1-100 Student1 Unit1 Training
101-120 Student1 Unit2 Training
120-221 Student1 Unit1 Training
222-236 Student1 Unit1 Test
. . . . . . . . . . . .

2.2 Basic Formula

After data sequence is reconstructed, we apply the following formula to determine the
probability a student correctly answer the questions in the first attempt (Q = correct).

P (Q = Correct)new = (1 − P (S = know)) ∗ guess+ P (S = know) ∗ (1 − slip) + luck (1)

Formula in eq. 1 is a modification from the formula in eq. 2 (Pardos et al., 2008). We
add luck factor to the formula alongside guess and slip factor. P (S = know) is the prior
probability of known skills. This probability is computed from the average probability of
each component of each student based on the knowledge he/she has got before.

P (Q = Correct) = (1 − P (S = know)) ∗ guess+ P (S = know) ∗ (1 − slip) (2)

Since we would like to give a more weight to the most recent result, exponential moving
average (Cox, 1961) is utilized to compute the average. Dealing with data which have more
than one knowledge components (KCs), we employ four strategies to combine different
knowledge components, i.e. mean (a normal average of the average probability of each
KCs), multiply (multiply the average probability of all KCs), max (the maximum value of
the average probability of the KCs) and min (the minimum value of the average probability
of the KCs). After this operation, we have four types of P (S = know). For each row in the
test data, the probability P (S = know) based on four strategies above.
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2.3 Stochastic Optimization

First, we would like to exploit the similarity behavior that could be hidden in the data.
In this case, we created 4 types of separation of the data, based on student id, prob-
lem hierarchy, problem name, and the number of the knowledge components. Separation
by student id yields around 3000 groups for algebra 2008 2009 dataset and 6000 groups
for bridge to algebra 2008 2009. Separation by problem hierarchy, problem name, and
the number of knowledge components yields about 160, 180000, and 12 groups for al-
gebra 2008 2009 dataset and 180, 50000, and 14 groups for bridge to algebra 2008 2009
dataset respectively.

For each separation and each group, we generate n random number for guess and n
random number for slip separately. Based on the empirical result, we pick 100 as the n,
although assigning lower (around 50) or higher value (around 200) could be possible. Next,
we calculate P (Q = correct) for each data using the guess and slip we define before (from
the random number list) and we try the four combination strategies as we define before
(mean, multiply, max and min). In total, we have to do 4 ∗ n calculation. Rmse is then
calculated for each group. The best configuration (combination strategy, guess, and slip
value), i.e. the configuration which yield the smallest rmse is saved for each group.

Finally, in order to determine luck, we apply the algorithm above in similar manner.
For each separation, we generate a list of n random number for each group. Then, we
calculate P (Q = correct)new for each random number we generate. In total, we process n
calculation. For each calculation, we also calculate the rmse. The value which yields the
smallest rmse is preserved as the best “luck” configuration for the group. In addition we
also save the smallest rmse that we can get for the group.

2.4 Applying the Model

The configuration that we have found in the previous section is the key for our model.
Please note that our configuration for each group in each separation includes the guess,
slip, combination strategy, luck and rmse for each group for each separation. In the test
dataset, we have to recognize the group for each separation for each row (basically we have
to recognize the value of its student id, problem hierarchy, problem name, and the number
of the knowledge components). For example:

Rows Student Id Problem Hierarchy Problem Name Knowledge Component

101 Student1 Unit 1, Section 1 Problem1 Addition, Equality
. . . . . . . . . . . . . . .

The data above would lie to the group “Student1” on the separation student id, group
“Unit 1, Section 1” on the separation problem hierarchy, group “Problem1” on the sep-
aration problem name, and group “2” on the separation the number of the knowledge
components.

For the next step, we look at the each group that we have found. We have 4 groups,
one group for each separation. Choose the group (in above example, look at the group
“Student1”, “Unit1, Section 1”, “Problem1”, and “2”) that has the smallest rmse. Then
use the guess, slip, luck and combination strategy to calculate P (Q = correct)new. The
result is the answer for CorrectF irstAttempt for the corresponding row.

3



Tri Kurniawan Wijaya and Philips Kokoh Prasetyo

3. Conclusions

We have described our knowledge tracing with stochastic method for the KDD Cup 2010.
We found that our simple approach performs reasonably well for the problem. One of
the important steps for this approach is the preprocessing to reconstruct data sequence.
We believe that if the data sequence can be reconstructed well, this approach will achieve
better results. A possible extension to improve this approach is feature weighting which
give importance notion of certain knowledge. Finally, we feel that this task gives us some
experiences in mining data for educational purposes.

Thank you to the organizers and sponsors for hosting KDD Cup 2010.
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Appendix A.

This appendix explains the exponential moving average. The formula of exponential moving
average is defined as follows:

S(t) = α ∗ Y (t) + (1 − α) ∗ S(t− 1)

Where S(t) is the average of time t, α is a real number between 0 - 1 (in this case, we use
0.1), Y (t) is the observation of time t. Exponential moving average is not necessarily use
since t = 1. For several t in the beginning, we shall use a normal average. In our approach,
we use the normal average calculation until t = 6 . We use exponential average from t = 7.
For example:

• The probability knowledge of 1010 is 0.5 (we use the normal average calculation)

• The probability knowledge of: 10101111 is 0.73. For the first six data (101011), S(6) is
0.6667. Then S(7) = 0.1∗1+(1−0.1)∗0.6667 = 0.7, and S(8) = 0.1+1+(1−0.1)∗0.7 =
0.73.
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